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Abstract

A neural network for controlhng the configuration of frame structure with elastic members is

proposed. In the present network, the structure is modeled not by using the relative angles of the

members but by using the distances between the joint locations alone. The relationship between the

environment and the joints is also defined by their mutual distances. The analog neural network

attains the reaching motion of the manipulator as a minimization problem of the energy constructed

by the distances between the joints, the target, the obstacles, etc. The network can generate not

only the final but also the transient configurations and the trajectry. This framework with flexibility

and parallelism is very suitable for controlling the Space Telerobotic systems with many degrees of

freedom.

1. Introduction

In the field of Space Telerobotics, the frame structures with elastic members are paid attention

as new types of robot manipulators, space cranes, etc[1]. They can be transformed to various con-

figurations with ease. And also they can be easily disassembled / assembled and folded / unfolded.

However, in general, it is very difficult to control such structure with excessive degrees of freedom.

On the other hand, the applicability of neural networks to Robotics attracts a lot of researchers

who produce interesting results. The possibility of parallel computation and/or the learning capa-

bility with generalization are especially emphasized as excellent characteristics of neural networks.

Recently this field is expected to be in harmony with Space Telerobotics.

Tsutsumi et al. proposed a new method for controlling the configuration of the robot manipulator

based on the Hopfield's neural network model[2]. According to this framework, the structure of the

manipulator is modeled not by using the polar coordinate but by using the distances between the

joint locations alone. The relationship between the environment and the joints is also defined by
their mutual distances. The constraints, for instance, 'to keep the link lengths constant', 'to keep the

safe distances between the farther joints', 'to avoid the obstacles', and 'to reach the target point',

can be defined as energy terms based on the distances. By virtue of this formulation, the problem
for the control resolves itself into how to find out the parameters so as to minimize the total energy.

The neural network derived from the energy can control not only the ordinary manipulator with

rigid links but also the elastic arm by weighting the energy terms adequately. And the processing

speed does not depend on the number of degrees of freedom when the parallel analog hardware is

employed.

In Sect.2, we describe the mathematical framework of the proposed method. In Sect.3, we apply
it to 3-dimentional frame structure with elastic members and show the simulation results. The

problems for the obstacles etc. and the future courses are discussed in the last section.
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[Fig.l] The structure of the manipulator in
the workspace with real and virtual
obstacles.

2. Formulation and Neural Network

We consider an ideal robot manipulator as shown in Fig.1. The positions of the base, the movable

joints, and the end are respectively given by _k, V,_,k (n = 1,2, ..,N- 1), and VN, k (k = 1,2,..,K).

The target point is A--'k (k = 1, 2, ..,K). L real and M virtual obstacles are assumed to be located on

the position _'t,k , _m,_ (1 = 1,2,..,L, m = 1,2,..,M, k = 1,2, ..,K) . The joints and the end have

sensors which can get the information about the following distances:

S,,,, = [_;_f=l(Vn,h--_h)2] '12 (n=l,2,..,N)

Sn,n t [ K= _h=l(V., h -- Vn,_l,k)2 ]1/2 (n = 2,3 .... N, n' ---- 2,3 .... n, n > .")

K ]1/.2Pn = [_k=x(Vn,h--_k) _ (n= 1,2 .... N) (1)

K g ]I/2Qnj = [_-_h=,(",k--_i.k) _ (n=1,2 .... N, 1=1,2 .... L)

_" V, ]1/2Rn.m = [_h=l('_,k--_;m,k) 2 (n = l, 2, .., N, m=l,2,..,M)

If one can find out the set of V,_,k so that PN ===_ 0 conserving the following constrains,

S,,,n = "S,,.n (n=1,2 .... N)

S,.n, > _,,,,v (n=2,3 .... N, n'=l,2 .... n-l)

P,, >_ '_. (n=I,2,..,N-1)

Q,*J -> Q,,,l (n = 1,2 ..... N, 1 = 1,2 ..... L)

R.,,,, > R.,m (n=l,2 .... ,N, m = l, 2, ,.., M)

then the behaviour of the solution corresponds to the action of the robot manipulator.

represent the desirable link lengths.

(2)

Here Sn,n

Sn,n' (n > n') , P,_ , Q_,,I , and Rn,m are radii of the keep-off
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[Fig.2] Block diagram of the analog neural network employed here.

regions characterized by the cone-type potential. Based on the constraints given by Eq.(2), we define

the following energies:

ES.,. = (1/2) • (S.,. - _.,.)2

(. = ],2 .... N)

ES,,,,,, = (1/2) * F(S,,,., - "_,,,.,)

(n = 2, 3, .., N,

EP. = (1/2), F(Pn-TJ.)

EP., = (1/2) . P_,

n' = 1,2,..,n - 1)

(. = 1,2, ..,N - 1)

EQn,l

E R,, ,,,, =

EGn,k =

where

(1/2) • F(O.,_ -Q.,3
(n = 1,2 .... N, 1 = 1,2 .... L)

(1/2) * r(Rn,., -'R,,,,,,)

(n = 1,2 .... N, m = 1,2,..,M)

f0 V"'k
(1/r.,k) * g-'(V)dV

(n = 1,2 .... N, k = 1,2 .... K)

and F(z)= [ 0 ifz__Og(x) x z 2 otherwiset

Adding up these energy terms to get the total energy given by Eq.(4),

(3)
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(4)

differentiating it with respect to time, and then employing the capacitances cn,k, we can obtain the
network equations as follows:

d U
-- Cl,k _ 1,k

= (V_ k - _) * (1 - _,x) _ (V2 k - V1 k) * (1 - _2,2)
' 5'1,1 ' ' 5'2,2

N

Ntttt2

+ (v,,_ - _[,). f(1 - 7'1)
/'1

I----1

M

,,*ffil ' Ra,m + Ul,h

(Vn,k__Vn_l,,),(l__-Sn,n)__(Vn+l,k__Vn,k).(1 -_.+,,.+1)
_n,n Sn+l ,n+l

N

+ y]_ (v.,._- v.,.) • f(1- _)
n:mn+l

d U =
-- Cn,k "_ n,k

n--1
'Tq

+ Z(Vn,h -- Vn',h) * f(1 - _)

+ (v. h- 7(h) • f(1 - 7s")
, 1..

'¢":_) u
+__,(v.,_-_,,_).m=Q.,,,., + _(v.,_ - V,.,_)•:0...._ - _"")R.,..+ --LV...,...

(n = 2,3 ..... N - 1)

(5)

-- CN,k

+

+

+

N,, (Vu,h V_'-I k) * (1 _._',u )
' SN,N

N--I

S_..,)y]_ (VN,k-- V.,,h) • 1(1 - sN,.,
.,_-_

(v_,_ - _,,)
L M

E(VN, k _ _,,k) , f(1 _N,:) E(V_,k _ V.,k) _N,m)
tfx QN,_ + */(1 - RN,., + 1--_U_v'k

mffiffil r N , k

where U.,k=V.k aad :(z)= _ 0 ifz_>O
' [, z otherwise

Figure 2 shows the block diagram of the analog neural network represented by Eq.(5). The network

has a direct feedback loop and indirect ones via non-lineax operational parts. According to the same

procedure as Hopfield proved, it is assured that the network output converges to a certain set of

values[3].

Figure 3a shows an example of the network behaviour. The end of the manipulator can reach

the target point retaining a natural posture. The links axe of the same lengths in the final stage.

However they lenghten in the trangent state. This is because the energy for link lengths is relatively

376



a b

[Fig.3ab] Examples of simulation. (a) Case in which the energy terms are summed
up without any weighting. (b) Case in which the adequately weighted
energy terms are employed.

set smaller than the others. Figure 3b shows the case in which the energy term for link lengths is

weighted severely. The link lengths in the trangent state are kept constant. Varieties of actions are
caused by adjusting the balance of the energy terms alone. This means that not only rigid but also

elastic types of robot manipulators can be easily represented.

3. Application to 3-Dimensional Frame Structure with Elastic Members

Tsutsumi et al. enhanced the proposed framework so as to control the configuration of the 2-

dimensional truss effectively/4/. The simulation studies show that the motions for 'Rotation' and

'Stretching/Translation' are well-controlled, but 'Shrinking/Translation' can not be attained. That
is, the behaviour of the truss structure under this control method is very similar to that of spiral

spring. This is because quadratic energy function is employed for the distances between the joints.

Therefore the truss with curved configuration has less total energy than that with homogeneously

shrinked members. In order to improve 'Shrinking/Translation', preliminarily shrinked 'Natural

Position' was considered. Then introducing a 'Virtual Target Point' and stretching the truss to it,

the control was assumed to start from this stretched position every time. It was named 'Initial

Position'. The introduction of both short 'Natural Position' and tall 'Initial Position' gets rid of

the practical shrinking motion from all modes of the behaviour and makes varieties of configurations

possible.

In the present study, we further apply this framework to the variable geometry truss (VG-truss)

which is a type of 3-dimensional frame structures with elastic members. Figure 4 shows the compo-

nent of VG-truss conceived by Miura et al[5]. Here the lengths of the vertical members are assumed

to be contant. The configuration of the truss can be changed by stretching or shrinking the hori-

zontal members. We can formulate this structure according to the same procedure as described in

Sect.2. That is, we first define the distances between the joints and those between the joints and the

environment. Then we construct the energy terms based on the constraints necessary for desirable
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[Fig .4] The structure of the 3-dimensional

variable geometry truss.

behaviour. Differentiating the sum of the energy terms with respect to time, we can obtain the analog
neural network whose block diagram is represented by Fig.2.

It is effective for 'Rotation / Stretching / Shrinking' motions to employ the above-mentioned

concepts named 'Natural Position', 'Virtual Target Point', and 'Initial Position'. When the target

point is placed at the side of the truss, the truss starts to curve and its end reaches the target point

keeping the overall length of 'Natural Positon'. Figure 5a shows an example of 'Rotation' using this

nature. Here we introduce virtual obstacles to improve the configurations. It is further effective to

divide the action into some parts by shifting the location of 'Virtual Target Point' in turn. Figure 5b

shows another example of 'Rotation'. Multiple virtual obstacles are introduced to keep the curved

configuration.

Figure 6a shows the case in which the target point is placed above the truss. The end reaches to

the target point. In this case, the variable members near the end tend to expand and contract more,

since the energy terms are summed up without any weighting. Therefore the transient configurations

are irregular as shown in the figure. The behaviour of the structure is improved sharply by employing

the sum of the adequately weighted energy terms. Figure 6b shows the example. Here we change the

weighting factors a few times on the way for obtaining the more desirable transient configurations.

Figure 7a shows a simulation result when the target point is placed inside the truss. As already

mentioned, the frame structure under this control method is poor at shrinking its member lengths

homogeneously. Therefore the short 'Natural Position' is introduced here. The end can reach the

target point shrinking its configuration, but the end of the truss sinks into the inside in the transient

state. This is because the constraints for the distances between the farther joints are not taken into

account here. It is clear that the truss can shrink its configuration successfully if such constraints

are considered. Another method for better 'Shrinking/Translation' is to remove the target point

temporarily. Since short 'Natural Position' is employed, the truss shrinks its overall length and it

moves to 'Natural Position' unaffectedly. Figure 7b demonstrates the exmaple.

4. Discussion

As already mentioned, the frame structure under this control method behaves just like a spiral

spring. In order to solve some problems caused by this nature, we introduced the concepts named
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'Natural Position', 'Virtual Target Point', 'Initial Position', and 'Virtual Obstacles'. Simulation

studies demonstrate that the neural network can successfully realize the basic motions of frame

structure with elastic members including 'Translation' and 'Rotation'. Although we did not exemplify

'Revolution' for want of space, it can be easily realized by using 'Virtual Target Point'. As shown in

Fig.8, it is sometimes necessary for better configurations to manually change the weighting factors
on the way. This is because the constraints for overall structure were not considered. We should take

into account the higher-level constraints for more desirable configurations.

One of the severe problems to be solved is for the deadlock state caused by the obstacles in the

workspace. Tsutsumi et al. proposed a learning strategy in which virtual obstacles are put on the

deadlocked location of the end. It is very compatible with the network. However it is not a type of

algorithm by which the syaiaptic connections are modified little by little repeating trial and error.

It appears to be reasonable to divide the network into two parts, namely the one for the structure

itself and the other for the environment. In this case, it will be effective to employ the mapping

network with learning capability such as Backpropagation Network in order to acquire and utilize
the information about the environment.

There remain a lot of future courses to be solved. However neural networks have high potentialities

and they will be indispensable to Space Telerobotics. At the same time, the complicated problems

in Space Telerobotics will give us good hints for modelling the neural networks.
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